
xml.etree.ElementTree — The
ElementTree XML API

Source code: Lib/xml/etree/ElementTree.py

The xml.etree.ElementTree module implements a simple and efficient API for pars-

ing and creating XML data.

Changed in version 3.3: This module will use a fast implementation whenever available.

The xml.etree.cElementTree module is deprecated.

Warning: The xml.etree.ElementTree module is not secure against maliciously

constructed data. If you need to parse untrusted or unauthenticated data see XML

vulnerabilities.

Tutorial

This is a short tutorial for using xml.etree.ElementTree (ET in short). The goal is to

demonstrate some of the building blocks and basic concepts of the module.

XML tree and elements

XML is an inherently hierarchical data format, and the most natural way to represent it

is with a tree. ET has two classes for this purpose - ElementTree represents the

whole XML document as a tree, and Element represents a single node in this tree. In-

teractions with the whole document (reading and writing to/from files) are usually done

on the ElementTree level. Interactions with a single XML element and its sub-

elements are done on the Element level.

Parsing XML

We’ll be using the following XML document as the sample data for this section:

<?xml version="1.0"?>
<data>

<country name="Liechtenstein">
<rank>1</rank>

Page 1 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

<year>2008</year>
<gdppc>141100</gdppc>
<neighbor name="Austria" direction="E"/>
<neighbor name="Switzerland" direction="W"/>

</country>
<country name="Singapore">

<rank>4</rank>
<year>2011</year>
<gdppc>59900</gdppc>
<neighbor name="Malaysia" direction="N"/>

</country>
<country name="Panama">

<rank>68</rank>
<year>2011</year>
<gdppc>13600</gdppc>
<neighbor name="Costa Rica" direction="W"/>
<neighbor name="Colombia" direction="E"/>

</country>
</data>

We can import this data by reading from a file:

Or directly from a string:

fromstring() parses XML from a string directly into an Element, which is the root el-

ement of the parsed tree. Other parsing functions may create an ElementTree. Check

the documentation to be sure.

As an Element, root has a tag and a dictionary of attributes:

It also has children nodes over which we can iterate:

import xml.etree.ElementTree as ET
tree = ET.parse('country_data.xml')
root = tree.getroot()

root = ET.fromstring(country_data_as_string)

>>> root.tag
'data'
>>> root.attrib
{}

>>>

>>> for child in root:
... print(child.tag, child.attrib)

>>>

Page 2 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

Children are nested, and we can access specific child nodes by index:

Note: Not all elements of the XML input will end up as elements of the parsed tree.

Currently, this module skips over any XML comments, processing instructions, and

document type declarations in the input. Nevertheless, trees built using this module’s

API rather than parsing from XML text can have comments and processing instruc-

tions in them; they will be included when generating XML output. A document type

declaration may be accessed by passing a custom TreeBuilder instance to the

XMLParser constructor.

Pull API for non-blocking parsing

Most parsing functions provided by this module require the whole document to be read

at once before returning any result. It is possible to use an XMLParser and feed data

into it incrementally, but it is a push API that calls methods on a callback target, which

is too low-level and inconvenient for most needs. Sometimes what the user really wants

is to be able to parse XML incrementally, without blocking operations, while enjoying

the convenience of fully constructed Element objects.

The most powerful tool for doing this is XMLPullParser. It does not require a blocking

read to obtain the XML data, and is instead fed with data incrementally with

XMLPullParser.feed() calls. To get the parsed XML elements, call

XMLPullParser.read_events(). Here is an example:

...
country {'name': 'Liechtenstein'}
country {'name': 'Singapore'}
country {'name': 'Panama'}

>>> root[0][1].text
'2008'

>>>

>>> parser = ET.XMLPullParser(['start', 'end'])
>>> parser.feed('<mytag>sometext')
>>> list(parser.read_events())
[('start', <Element 'mytag' at 0x7fa66db2be58>)]
>>> parser.feed(' more text</mytag>')
>>> for event, elem in parser.read_events():
... print(event)
... print(elem.tag, 'text=', elem.text)
...
end

>>>

Page 3 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

The obvious use case is applications that operate in a non-blocking fashion where the

XML data is being received from a socket or read incrementally from some storage de-

vice. In such cases, blocking reads are unacceptable.

Because it’s so flexible, XMLPullParser can be inconvenient to use for simpler use-

cases. If you don’t mind your application blocking on reading XML data but would still

like to have incremental parsing capabilities, take a look at iterparse(). It can be

useful when you’re reading a large XML document and don’t want to hold it wholly in

memory.

Finding interesting elements

Element has some useful methods that help iterate recursively over all the sub-tree

below it (its children, their children, and so on). For example, Element.iter():

Element.findall() finds only elements with a tag which are direct children of the

current element. Element.find() finds the first child with a particular tag, and

Element.text accesses the element’s text content. Element.get() accesses the el-

ement’s attributes:

More sophisticated specification of which elements to look for is possible by using

XPath.

>>> for neighbor in root.iter('neighbor'):
... print(neighbor.attrib)
...
{'name': 'Austria', 'direction': 'E'}
{'name': 'Switzerland', 'direction': 'W'}
{'name': 'Malaysia', 'direction': 'N'}
{'name': 'Costa Rica', 'direction': 'W'}
{'name': 'Colombia', 'direction': 'E'}

>>>

>>> for country in root.findall('country'):
... rank = country.find('rank').text
... name = country.get('name')
... print(name, rank)
...
Liechtenstein 1
Singapore 4
Panama 68

>>>

Page 4 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

Modifying an XML File

ElementTree provides a simple way to build XML documents and write them to files.

The ElementTree.write() method serves this purpose.

Once created, an Element object may be manipulated by directly changing its fields

(such as Element.text), adding and modifying attributes (Element.set() method),

as well as adding new children (for example with Element.append()).

Let’s say we want to add one to each country’s rank, and add an updated attribute to

the rank element:

Our XML now looks like this:

<?xml version="1.0"?>
<data>

<country name="Liechtenstein">
<rank updated="yes">2</rank>
<year>2008</year>
<gdppc>141100</gdppc>
<neighbor name="Austria" direction="E"/>
<neighbor name="Switzerland" direction="W"/>

</country>
<country name="Singapore">

<rank updated="yes">5</rank>
<year>2011</year>
<gdppc>59900</gdppc>
<neighbor name="Malaysia" direction="N"/>

</country>
<country name="Panama">

<rank updated="yes">69</rank>
<year>2011</year>
<gdppc>13600</gdppc>
<neighbor name="Costa Rica" direction="W"/>
<neighbor name="Colombia" direction="E"/>

</country>
</data>

>>> for rank in root.iter('rank'):
... new_rank = int(rank.text) + 1
... rank.text = str(new_rank)
... rank.set('updated', 'yes')
...
>>> tree.write('output.xml')

>>>

Page 5 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

We can remove elements using Element.remove(). Let’s say we want to remove all

countries with a rank higher than 50:

Our XML now looks like this:

<?xml version="1.0"?>
<data>

<country name="Liechtenstein">
<rank updated="yes">2</rank>
<year>2008</year>
<gdppc>141100</gdppc>
<neighbor name="Austria" direction="E"/>
<neighbor name="Switzerland" direction="W"/>

</country>
<country name="Singapore">

<rank updated="yes">5</rank>
<year>2011</year>
<gdppc>59900</gdppc>
<neighbor name="Malaysia" direction="N"/>

</country>
</data>

Building XML documents

The SubElement() function also provides a convenient way to create new sub-

elements for a given element:

Parsing XML with Namespaces

>>> for country in root.findall('country'):
... rank = int(country.find('rank').text)
... if rank > 50:
... root.remove(country)
...
>>> tree.write('output.xml')

>>>

>>> a = ET.Element('a')
>>> b = ET.SubElement(a, 'b')
>>> c = ET.SubElement(a, 'c')
>>> d = ET.SubElement(c, 'd')
>>> ET.dump(a)
<a><c><d /></c>

>>>

Page 6 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

 

If the XML input has namespaces, tags and attributes with prefixes in the form

prefix:sometag get expanded to {uri}sometag where the prefix is replaced by the

full URI. Also, if there is a default namespace, that full URI gets prepended to all of the

non-prefixed tags.

Here is an XML example that incorporates two namespaces, one with the prefix “fiction-

al” and the other serving as the default namespace:

<?xml version="1.0"?>
<actors xmlns:fictional="http://characters.example.com"

xmlns="http://people.example.com">
<actor>

<name>John Cleese</name>
<fictional:character>Lancelot</fictional:character>
<fictional:character>Archie Leach</fictional:character>

</actor>
<actor>

<name>Eric Idle</name>
<fictional:character>Sir Robin</fictional:character>
<fictional:character>Gunther</fictional:character>
<fictional:character>Commander Clement</fictional:character>

</actor>
</actors>

One way to search and explore this XML example is to manually add the URI to every

tag or attribute in the xpath of a find() or findall():

A better way to search the namespaced XML example is to create a dictionary with

your own prefixes and use those in the search functions:

 

root = fromstring(xml_text)
for actor in root.findall('{http://people.example.com}actor'):
 name = actor.find('{http://people.example.com}name')

print(name.text)
for char in actor.findall('{http://characters.example.com}character'

print(' |-->', char.text)

ns = {'real_person': 'http://people.example.com',
'role': 'http://characters.example.com'}

for actor in root.findall('real_person:actor', ns):
 name = actor.find('real_person:name', ns)

print(name.text)

Page 7 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

These two approaches both output:

Additional resources

See http://effbot.org/zone/element-index.htm for tutorials and links to other docs.

XPath support

This module provides limited support for XPath expressions for locating elements in a

tree. The goal is to support a small subset of the abbreviated syntax; a full XPath en-

gine is outside the scope of the module.

Example

Here’s an example that demonstrates some of the XPath capabilities of the module.

We’ll be using the countrydata XML document from the Parsing XML section:

for char in actor.findall('role:character', ns):
print(' |-->', char.text)

John Cleese
|--> Lancelot
|--> Archie Leach

Eric Idle
|--> Sir Robin
|--> Gunther
|--> Commander Clement

import xml.etree.ElementTree as ET

root = ET.fromstring(countrydata)

Top-level elements
root.findall(".")

All 'neighbor' grand-children of 'country' children of the top-level
elements
root.findall("./country/neighbor")

Nodes with name='Singapore' that have a 'year' child
root.findall(".//year/..[@name='Singapore']")

'year' nodes that are children of nodes with name='Singapore'

Page 8 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

For XML with namespaces, use the usual qualified {namespace}tag notation:

Supported XPath syntax

Syntax Meaning

tag

Selects all child elements with the given tag. For example,

spam selects all child elements named spam, and

spam/egg selects all grandchildren named egg in all chil-

dren named spam. {namespace}* selects all tags in the

given namespace, {*}spam selects tags named spam in

any (or no) namespace, and {}* only selects tags that are

not in a namespace.

Changed in version 3.8: Support for star-wildcards was

added.

*

Selects all child elements, including comments and pro-

cessing instructions. For example, */egg selects all

grandchildren named egg.

.
Selects the current node. This is mostly useful at the be-

ginning of the path, to indicate that it’s a relative path.

//

Selects all subelements, on all levels beneath the current

element. For example, .//egg selects all egg elements in

the entire tree.

..

Selects the parent element. Returns None if the path at-

tempts to reach the ancestors of the start element (the ele-

ment find was called on).

[@attrib] Selects all elements that have the given attribute.

[@attrib='value']

root.findall(".//*[@name='Singapore']/year")

All 'neighbor' nodes that are the second child of their parent
root.findall(".//neighbor[2]")

All dublin-core "title" tags in the document
root.findall(".//{http://purl.org/dc/elements/1.1/}title")

Page 9 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

Syntax Meaning

Selects all elements for which the given attribute has the

given value. The value cannot contain quotes.

[tag]
Selects all elements that have a child named tag. Only

immediate children are supported.

[.='text']

Selects all elements whose complete text content, includ-

ing descendants, equals the given text.

New in version 3.7.

[tag='text']

Selects all elements that have a child named tag whose

complete text content, including descendants, equals the

given text.

[position]

Selects all elements that are located at the given position.

The position can be either an integer (1 is the first posi-

tion), the expression last() (for the last position), or a

position relative to the last position (e.g. last()-1).

Predicates (expressions within square brackets) must be preceded by a tag name, an

asterisk, or another predicate. position predicates must be preceded by a tag name.

Reference

Functions

xml.etree.ElementTree.canonicalize(xml_data=None, *, out=None,
from_file=None, **options)

C14N 2.0 transformation function.

Canonicalization is a way to normalise XML output in a way that allows byte-by-

byte comparisons and digital signatures. It reduced the freedom that XML serializ-

ers have and instead generates a more constrained XML representation. The main

restrictions regard the placement of namespace declarations, the ordering of attrib-

utes, and ignorable whitespace.

This function takes an XML data string (xml_data) or a file path or file-like object

(from_file) as input, converts it to the canonical form, and writes it out using the out

file(-like) object, if provided, or returns it as a text string if not. The output file re-

Page 10 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

ceives text, not bytes. It should therefore be opened in text mode with utf-8 en-

coding.

Typical uses:

The configuration options are as follows:

• with_comments: set to true to include comments (default: false)

• strip_text: set to true to strip whitespace before and after text content

(default: false)

• rewrite_prefixes: set to true to replace namespace prefixes by “n{number}”

(default: false)

• qname_aware_tags: a set of qname aware tag names in which prefixes

should be replaced in text content (default: empty)

• qname_aware_attrs: a set of qname aware attribute names in which prefixes

should be replaced in text content (default: empty)

• exclude_attrs: a set of attribute names that should not be serialised

• exclude_tags: a set of tag names that should not be serialised

In the option list above, “a set” refers to any collection or iterable of strings, no or-

dering is expected.

New in version 3.8.

xml.etree.ElementTree.Comment(text=None)

Comment element factory. This factory function creates a special element that will

be serialized as an XML comment by the standard serializer. The comment string

can be either a bytestring or a Unicode string. text is a string containing the com-

ment string. Returns an element instance representing a comment.

 

xml_data = "<root>...</root>"
print(canonicalize(xml_data))

with open("c14n_output.xml", mode='w', encoding='utf-8') as out_file:
 canonicalize(xml_data, out=out_file)

with open("c14n_output.xml", mode='w', encoding='utf-8') as out_file:
 canonicalize(from_file="inputfile.xml", out=out_file)

Page 11 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

Note that XMLParser skips over comments in the input instead of creating com-

ment objects for them. An ElementTree will only contain comment nodes if they

have been inserted into to the tree using one of the Element methods.

xml.etree.ElementTree.dump(elem)

Writes an element tree or element structure to sys.stdout. This function should be

used for debugging only.

The exact output format is implementation dependent. In this version, it’s written as

an ordinary XML file.

elem is an element tree or an individual element.

Changed in version 3.8: The dump() function now preserves the attribute order

specified by the user.

xml.etree.ElementTree.fromstring(text, parser=None)

Parses an XML section from a string constant. Same as XML(). text is a string con-

taining XML data. parser is an optional parser instance. If not given, the standard

XMLParser parser is used. Returns an Element instance.

xml.etree.ElementTree.fromstringlist(sequence, parser=None)

Parses an XML document from a sequence of string fragments. sequence is a list

or other sequence containing XML data fragments. parser is an optional parser in-

stance. If not given, the standard XMLParser parser is used. Returns an Element

instance.

New in version 3.2.

xml.etree.ElementTree.iselement(element)

Check if an object appears to be a valid element object. element is an element in-

stance. Return True if this is an element object.

xml.etree.ElementTree.iterparse(source, events=None, parser=None)

Parses an XML section into an element tree incrementally, and reports what’s go-

ing on to the user. source is a filename or file object containing XML data. events is

a sequence of events to report back. The supported events are the strings

"start", "end", "comment", "pi", "start-ns" and "end-ns" (the “ns”

events are used to get detailed namespace information). If events is omitted, only

"end" events are reported. parser is an optional parser instance. If not given, the

Page 12 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

standard XMLParser parser is used. parser must be a subclass of XMLParser and

can only use the default TreeBuilder as a target. Returns an iterator providing

(event, elem) pairs.

Note that while iterparse() builds the tree incrementally, it issues blocking

reads on source (or the file it names). As such, it’s unsuitable for applications

where blocking reads can’t be made. For fully non-blocking parsing, see

XMLPullParser.

Note: iterparse() only guarantees that it has seen the “>” character of a

starting tag when it emits a “start” event, so the attributes are defined, but the

contents of the text and tail attributes are undefined at that point. The same ap-

plies to the element children; they may or may not be present.

If you need a fully populated element, look for “end” events instead.

Deprecated since version 3.4: The parser argument.

Changed in version 3.8: The comment and pi events were added.

xml.etree.ElementTree.parse(source, parser=None)

Parses an XML section into an element tree. source is a filename or file object con-

taining XML data. parser is an optional parser instance. If not given, the standard

XMLParser parser is used. Returns an ElementTree instance.

xml.etree.ElementTree.ProcessingInstruction(target, text=None)

PI element factory. This factory function creates a special element that will be seri-

alized as an XML processing instruction. target is a string containing the PI target.

text is a string containing the PI contents, if given. Returns an element instance,

representing a processing instruction.

Note that XMLParser skips over processing instructions in the input instead of cre-

ating comment objects for them. An ElementTree will only contain processing in-

struction nodes if they have been inserted into to the tree using one of the

Element methods.

xml.etree.ElementTree.register_namespace(prefix, uri)

Registers a namespace prefix. The registry is global, and any existing mapping for

either the given prefix or the namespace URI will be removed. prefix is a

Page 13 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

namespace prefix. uri is a namespace uri. Tags and attributes in this namespace

will be serialized with the given prefix, if at all possible.

New in version 3.2.

xml.etree.ElementTree.SubElement(parent, tag, attrib={}, **extra)

Subelement factory. This function creates an element instance, and appends it to

an existing element.

The element name, attribute names, and attribute values can be either bytestrings

or Unicode strings. parent is the parent element. tag is the subelement name. attrib

is an optional dictionary, containing element attributes. extra contains additional at-

tributes, given as keyword arguments. Returns an element instance.

xml.etree.ElementTree.tostring(element, encoding="us-ascii",
method="xml", *, xml_declaration=None, default_namespace=None,
short_empty_elements=True)

Generates a string representation of an XML element, including all subelements.

element is an Element instance. encoding [1] is the output encoding (default is

US-ASCII). Use encoding="unicode" to generate a Unicode string (otherwise, a

bytestring is generated). method is either "xml", "html" or "text" (default is

"xml"). xml_declaration, default_namespace and short_empty_elements has the

same meaning as in ElementTree.write(). Returns an (optionally) encoded

string containing the XML data.

New in version 3.4: The short_empty_elements parameter.

New in version 3.8: The xml_declaration and default_namespace parameters.

Changed in version 3.8: The tostring() function now preserves the attribute or-

der specified by the user.

xml.etree.ElementTree.tostringlist(element, encoding="us-ascii",
method="xml", *, xml_declaration=None, default_namespace=None,
short_empty_elements=True)

Generates a string representation of an XML element, including all subelements.

element is an Element instance. encoding [1] is the output encoding (default is

US-ASCII). Use encoding="unicode" to generate a Unicode string (otherwise, a

bytestring is generated). method is either "xml", "html" or "text" (default is

"xml"). xml_declaration, default_namespace and short_empty_elements has the

same meaning as in ElementTree.write(). Returns a list of (optionally) encod-

Page 14 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

ed strings containing the XML data. It does not guarantee any specific sequence,

except that b"".join(tostringlist(element)) == tostring(element).

New in version 3.2.

New in version 3.4: The short_empty_elements parameter.

New in version 3.8: The xml_declaration and default_namespace parameters.

Changed in version 3.8: The tostringlist() function now preserves the attrib-

ute order specified by the user.

xml.etree.ElementTree.XML(text, parser=None)

Parses an XML section from a string constant. This function can be used to embed

“XML literals” in Python code. text is a string containing XML data. parser is an op-

tional parser instance. If not given, the standard XMLParser parser is used. Re-

turns an Element instance.

xml.etree.ElementTree.XMLID(text, parser=None)

Parses an XML section from a string constant, and also returns a dictionary which

maps from element id:s to elements. text is a string containing XML data. parser is

an optional parser instance. If not given, the standard XMLParser parser is used.

Returns a tuple containing an Element instance and a dictionary.

XInclude support

This module provides limited support for XInclude directives, via the

xml.etree.ElementInclude helper module. This module can be used to insert sub-

trees and text strings into element trees, based on information in the tree.

Example

Here’s an example that demonstrates use of the XInclude module. To include an XML

document in the current document, use the {http://www.w3.org/2001/XInclude}

include element and set the parse attribute to "xml", and use the href attribute to

specify the document to include.

<?xml version="1.0"?>
<document xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="source.xml" parse="xml" />
</document>

Page 15 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

By default, the href attribute is treated as a file name. You can use custom loaders to

override this behaviour. Also note that the standard helper does not support XPointer

syntax.

To process this file, load it as usual, and pass the root element to the

xml.etree.ElementTree module:

The ElementInclude module replaces the {http://www.w3.org/2001/XInclude}

include element with the root element from the source.xml document. The result

might look something like this:

<document xmlns:xi="http://www.w3.org/2001/XInclude">
<para>This is a paragraph.</para>

</document>

If the parse attribute is omitted, it defaults to “xml”. The href attribute is required.

To include a text document, use the {http://www.w3.org/2001/XInclude}

include element, and set the parse attribute to “text”:

<?xml version="1.0"?>
<document xmlns:xi="http://www.w3.org/2001/XInclude">
 Copyright (c) <xi:include href="year.txt" parse="text" />.
</document>

The result might look something like:

<document xmlns:xi="http://www.w3.org/2001/XInclude">
 Copyright (c) 2003.
</document>

Reference

Functions

from xml.etree import ElementTree, ElementInclude

tree = ElementTree.parse("document.xml")
root = tree.getroot()

ElementInclude.include(root)

Page 16 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

xml.etree.ElementInclude.default_loader(href, parse,
encoding=None)

Default loader. This default loader reads an included resource from disk. href is a

URL. parse is for parse mode either “xml” or “text”. encoding is an optional text en-

coding. If not given, encoding is utf-8. Returns the expanded resource. If the

parse mode is "xml", this is an ElementTree instance. If the parse mode is “text”,

this is a Unicode string. If the loader fails, it can return None or raise an exception.

xml.etree.ElementInclude.include(elem, loader=None)

This function expands XInclude directives. elem is the root element. loader is an

optional resource loader. If omitted, it defaults to default_loader(). If given, it

should be a callable that implements the same interface as default_loader().

Returns the expanded resource. If the parse mode is "xml", this is an Ele-

mentTree instance. If the parse mode is “text”, this is a Unicode string. If the loader

fails, it can return None or raise an exception.

Element Objects

class xml.etree.ElementTree.Element(tag, attrib={}, **extra)

Element class. This class defines the Element interface, and provides a reference

implementation of this interface.

The element name, attribute names, and attribute values can be either bytestrings

or Unicode strings. tag is the element name. attrib is an optional dictionary, contain-

ing element attributes. extra contains additional attributes, given as keyword argu-

ments.

tag
A string identifying what kind of data this element represents (the element type,

in other words).

text
tail

These attributes can be used to hold additional data associated with the ele-

ment. Their values are usually strings but may be any application-specific ob-

ject. If the element is created from an XML file, the text attribute holds either

the text between the element’s start tag and its first child or end tag, or None,

and the tail attribute holds either the text between the element’s end tag and

the next tag, or None. For the XML data

Page 17 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

<a>1<c>2<d/>3</c>4

the a element has None for both text and tail attributes, the b element has text

"1" and tail "4", the c element has text "2" and tail None, and the d element

has text None and tail "3".

To collect the inner text of an element, see itertext(), for example

"".join(element.itertext()).

Applications may store arbitrary objects in these attributes.

attrib
A dictionary containing the element’s attributes. Note that while the attrib value

is always a real mutable Python dictionary, an ElementTree implementation

may choose to use another internal representation, and create the dictionary

only if someone asks for it. To take advantage of such implementations, use

the dictionary methods below whenever possible.

The following dictionary-like methods work on the element attributes.

clear()

Resets an element. This function removes all subelements, clears all attrib-

utes, and sets the text and tail attributes to None.

get(key, default=None)

Gets the element attribute named key.

Returns the attribute value, or default if the attribute was not found.

items()

Returns the element attributes as a sequence of (name, value) pairs. The at-

tributes are returned in an arbitrary order.

keys()

Returns the elements attribute names as a list. The names are returned in an

arbitrary order.

set(key, value)

Set the attribute key on the element to value.

The following methods work on the element’s children (subelements).

Page 18 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

append(subelement)

Adds the element subelement to the end of this element’s internal list of subel-

ements. Raises TypeError if subelement is not an Element.

extend(subelements)

Appends subelements from a sequence object with zero or more elements.

Raises TypeError if a subelement is not an Element.

New in version 3.2.

find(match, namespaces=None)

Finds the first subelement matching match. match may be a tag name or a

path. Returns an element instance or None. namespaces is an optional map-

ping from namespace prefix to full name. Pass '' as prefix to move all unpre-

fixed tag names in the expression into the given namespace.

findall(match, namespaces=None)

Finds all matching subelements, by tag name or path. Returns a list containing

all matching elements in document order. namespaces is an optional mapping

from namespace prefix to full name. Pass '' as prefix to move all unprefixed

tag names in the expression into the given namespace.

findtext(match, default=None, namespaces=None)

Finds text for the first subelement matching match. match may be a tag name

or a path. Returns the text content of the first matching element, or default if no

element was found. Note that if the matching element has no text content an

empty string is returned. namespaces is an optional mapping from namespace

prefix to full name. Pass '' as prefix to move all unprefixed tag names in the

expression into the given namespace.

getchildren()

Deprecated since version 3.2, will be removed in version 3.9: Use list

(elem) or iteration.

getiterator(tag=None)

Deprecated since version 3.2, will be removed in version 3.9: Use method

Element.iter() instead.

insert(index, subelement)

Page 19 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

Inserts subelement at the given position in this element. Raises TypeError if

subelement is not an Element.

iter(tag=None)

Creates a tree iterator with the current element as the root. The iterator iterates

over this element and all elements below it, in document (depth first) order. If

tag is not None or '*', only elements whose tag equals tag are returned from

the iterator. If the tree structure is modified during iteration, the result is unde-

fined.

New in version 3.2.

iterfind(match, namespaces=None)

Finds all matching subelements, by tag name or path. Returns an iterable

yielding all matching elements in document order. namespaces is an optional

mapping from namespace prefix to full name.

New in version 3.2.

itertext()

Creates a text iterator. The iterator loops over this element and all subele-

ments, in document order, and returns all inner text.

New in version 3.2.

makeelement(tag, attrib)

Creates a new element object of the same type as this element. Do not call this

method, use the SubElement() factory function instead.

remove(subelement)

Removes subelement from the element. Unlike the find* methods this method

compares elements based on the instance identity, not on tag value or con-

tents.

Element objects also support the following sequence type methods for working

with subelements: __delitem__(), __getitem__(), __setitem__(), __len__

().

Caution: Elements with no subelements will test as False. This behavior will

change in future versions. Use specific len(elem) or elem is None test instead.

Page 20 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

Prior to Python 3.8, the serialisation order of the XML attributes of elements was ar-

tificially made predictable by sorting the attributes by their name. Based on the now

guaranteed ordering of dicts, this arbitrary reordering was removed in Python 3.8 to

preserve the order in which attributes were originally parsed or created by user

code.

In general, user code should try not to depend on a specific ordering of attributes,

given that the XML Information Set explicitly excludes the attribute order from con-

veying information. Code should be prepared to deal with any ordering on input. In

cases where deterministic XML output is required, e.g. for cryptographic signing or

test data sets, canonical serialisation is available with the canonicalize() func-

tion.

In cases where canonical output is not applicable but a specific attribute order is

still desirable on output, code should aim for creating the attributes directly in the

desired order, to avoid perceptual mismatches for readers of the code. In cases

where this is difficult to achieve, a recipe like the following can be applied prior to

serialisation to enforce an order independently from the Element creation:

ElementTree Objects

class xml.etree.ElementTree.ElementTree(element=None, file=None)

ElementTree wrapper class. This class represents an entire element hierarchy, and

adds some extra support for serialization to and from standard XML.

element = root.find('foo')

if not element: # careful!
print("element not found, or element has no subelements")

if element is None:
print("element not found")

def reorder_attributes(root):
for el in root.iter():

 attrib = el.attrib
if len(attrib) > 1:

adjust attribute order, e.g. by sorting
 attribs = sorted(attrib.items())
 attrib.clear()
 attrib.update(attribs)

Page 21 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

element is the root element. The tree is initialized with the contents of the XML file

if given.

_setroot(element)

Replaces the root element for this tree. This discards the current contents of

the tree, and replaces it with the given element. Use with care. element is an

element instance.

find(match, namespaces=None)

Same as Element.find(), starting at the root of the tree.

findall(match, namespaces=None)

Same as Element.findall(), starting at the root of the tree.

findtext(match, default=None, namespaces=None)

Same as Element.findtext(), starting at the root of the tree.

getiterator(tag=None)

Deprecated since version 3.2, will be removed in version 3.9: Use method

ElementTree.iter() instead.

getroot()

Returns the root element for this tree.

iter(tag=None)

Creates and returns a tree iterator for the root element. The iterator loops over

all elements in this tree, in section order. tag is the tag to look for (default is to

return all elements).

iterfind(match, namespaces=None)

Same as Element.iterfind(), starting at the root of the tree.

New in version 3.2.

parse(source, parser=None)

Loads an external XML section into this element tree. source is a file name or

file object. parser is an optional parser instance. If not given, the standard

XMLParser parser is used. Returns the section root element.

Page 22 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

write(file, encoding="us-ascii", xml_declaration=None, de-

fault_namespace=None, method="xml", *, short_empty_elements=True)

Writes the element tree to a file, as XML. file is a file name, or a file object

opened for writing. encoding [1] is the output encoding (default is US-ASCII).

xml_declaration controls if an XML declaration should be added to the file. Use

False for never, True for always, None for only if not US-ASCII or UTF-8 or

Unicode (default is None). default_namespace sets the default XML

namespace (for “xmlns”). method is either "xml", "html" or "text" (default

is "xml"). The keyword-only short_empty_elements parameter controls the

formatting of elements that contain no content. If True (the default), they are

emitted as a single self-closed tag, otherwise they are emitted as a pair of

start/end tags.

The output is either a string (str) or binary (bytes). This is controlled by the

encoding argument. If encoding is "unicode", the output is a string; other-

wise, it’s binary. Note that this may conflict with the type of file if it’s an open

file object; make sure you do not try to write a string to a binary stream and

vice versa.

New in version 3.4: The short_empty_elements parameter.

Changed in version 3.8: The write() method now preserves the attribute or-

der specified by the user.

This is the XML file that is going to be manipulated:

Example of changing the attribute “target” of every link in first paragraph:

<html>
<head>

<title>Example page</title>
</head>
<body>

<p>Moved to example.org
or example.com.</p>

</body>
</html>

>>> from xml.etree.ElementTree import ElementTree
>>> tree = ElementTree()
>>> tree.parse("index.xhtml")
<Element 'html' at 0xb77e6fac>

>>>

Page 23 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

QName Objects

class xml.etree.ElementTree.QName(text_or_uri, tag=None)

QName wrapper. This can be used to wrap a QName attribute value, in order to get

proper namespace handling on output. text_or_uri is a string containing the QName

value, in the form {uri}local, or, if the tag argument is given, the URI part of a

QName. If tag is given, the first argument is interpreted as a URI, and this argu-

ment is interpreted as a local name. QName instances are opaque.

TreeBuilder Objects

class xml.etree.ElementTree.TreeBuilder(element_factory=None, *,
comment_factory=None, pi_factory=None, insert_comments=False,
insert_pis=False)

Generic element structure builder. This builder converts a sequence of start, data,

end, comment and pi method calls to a well-formed element structure. You can use

this class to build an element structure using a custom XML parser, or a parser for

some other XML-like format.

element_factory, when given, must be a callable accepting two positional argu-

ments: a tag and a dict of attributes. It is expected to return a new element in-

stance.

The comment_factory and pi_factory functions, when given, should behave like the

Comment() and ProcessingInstruction() functions to create comments and

processing instructions. When not given, the default factories will be used. When

insert_comments and/or insert_pis is true, comments/pis will be inserted into the

tree if they appear within the root element (but not outside of it).

close()

 

>>> p = tree.find("body/p") # Finds first occurrence of tag p in body
>>> p
<Element 'p' at 0xb77ec26c>
>>> links = list(p.iter("a")) # Returns list of all links
>>> links
[<Element 'a' at 0xb77ec2ac>, <Element 'a' at 0xb77ec1cc>]
>>> for i in links: # Iterates through all found links
... i.attrib["target"] = "blank"
>>> tree.write("output.xhtml")

Page 24 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

Flushes the builder buffers, and returns the toplevel document element. Re-

turns an Element instance.

data(data)

Adds text to the current element. data is a string. This should be either a

bytestring, or a Unicode string.

end(tag)

Closes the current element. tag is the element name. Returns the closed ele-

ment.

start(tag, attrs)

Opens a new element. tag is the element name. attrs is a dictionary containing

element attributes. Returns the opened element.

comment(text)

Creates a comment with the given text. If insert_comments is true, this will

also add it to the tree.

New in version 3.8.

pi(target, text)

Creates a comment with the given target name and text. If insert_pis is

true, this will also add it to the tree.

New in version 3.8.

In addition, a custom TreeBuilder object can provide the following methods:

doctype(name, pubid, system)

Handles a doctype declaration. name is the doctype name. pubid is the public

identifier. system is the system identifier. This method does not exist on the de-

fault TreeBuilder class.

New in version 3.2.

start_ns(prefix, uri)

Is called whenever the parser encounters a new namespace declaration, be-

fore the start() callback for the opening element that defines it. prefix is ''

for the default namespace and the declared namespace prefix name other-

wise. uri is the namespace URI.

Page 25 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

New in version 3.8.

end_ns(prefix)

Is called after the end() callback of an element that declared a namespace

prefix mapping, with the name of the prefix that went out of scope.

New in version 3.8.

class xml.etree.ElementTree.C14NWriterTarget(write, *,
with_comments=False, strip_text=False, rewrite_prefixes=False,
qname_aware_tags=None, qname_aware_attrs=None, exclude_attrs=None,
exclude_tags=None)

A C14N 2.0 writer. Arguments are the same as for the canonicalize() function.

This class does not build a tree but translates the callback events directly into a se-

rialised form using the write function.

New in version 3.8.

XMLParser Objects

class xml.etree.ElementTree.XMLParser(*, target=None, encoding=None)

This class is the low-level building block of the module. It uses

xml.parsers.expat for efficient, event-based parsing of XML. It can be fed XML

data incrementally with the feed() method, and parsing events are translated to a

push API - by invoking callbacks on the target object. If target is omitted, the stand-

ard TreeBuilder is used. If encoding [1] is given, the value overrides the encod-

ing specified in the XML file.

Changed in version 3.8: Parameters are now keyword-only. The html argument no

longer supported.

close()

Finishes feeding data to the parser. Returns the result of calling the close()

method of the target passed during construction; by default, this is the toplevel

document element.

feed(data)

Feeds data to the parser. data is encoded data.

Page 26 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

XMLParser.feed() calls target’s start(tag, attrs_dict) method for each

opening tag, its end(tag) method for each closing tag, and data is processed by

method data(data). For further supported callback methods, see the

TreeBuilder class. XMLParser.close() calls target’s method close().

XMLParser can be used not only for building a tree structure. This is an example

of counting the maximum depth of an XML file:

XMLPullParser Objects

class xml.etree.ElementTree.XMLPullParser(events=None)

A pull parser suitable for non-blocking applications. Its input-side API is similar to

that of XMLParser, but instead of pushing calls to a callback target,

 

>>> from xml.etree.ElementTree import XMLParser
>>> class MaxDepth: # The target object of the parser
... maxDepth = 0
... depth = 0
... def start(self, tag, attrib): # Called for each opening tag.
... self.depth += 1
... if self.depth > self.maxDepth:
... self.maxDepth = self.depth
... def end(self, tag): # Called for each closing tag.
... self.depth -= 1
... def data(self, data):
... pass # We do not need to do anything with data.
... def close(self): # Called when all data has been parsed.
... return self.maxDepth
...
>>> target = MaxDepth()
>>> parser = XMLParser(target=target)
>>> exampleXml = """
... <a>
...
...
...
... <c>
... <d>
... </d>
... </c>
...
... """
>>> parser.feed(exampleXml)
>>> parser.close()
4

>>>

Page 27 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

XMLPullParser collects an internal list of parsing events and lets the user read

from it. events is a sequence of events to report back. The supported events are

the strings "start", "end", "comment", "pi", "start-ns" and "end-ns" (the

“ns” events are used to get detailed namespace information). If events is omitted,

only "end" events are reported.

feed(data)

Feed the given bytes data to the parser.

close()

Signal the parser that the data stream is terminated. Unlike XMLParser.close

(), this method always returns None. Any events not yet retrieved when the

parser is closed can still be read with read_events().

read_events()

Return an iterator over the events which have been encountered in the data

fed to the parser. The iterator yields (event, elem) pairs, where event is a

string representing the type of event (e.g. "end") and elem is the encountered

Element object, or other context value as follows.

• start, end: the current Element.

• comment, pi: the current comment / processing instruction

• start-ns: a tuple (prefix, uri) naming the declared namespace

mapping.

• end-ns: None (this may change in a future version)

Events provided in a previous call to read_events() will not be yielded again.

Events are consumed from the internal queue only when they are retrieved

from the iterator, so multiple readers iterating in parallel over iterators obtained

from read_events() will have unpredictable results.

Note: XMLPullParser only guarantees that it has seen the “>” character of a

starting tag when it emits a “start” event, so the attributes are defined, but the

contents of the text and tail attributes are undefined at that point. The same ap-

plies to the element children; they may or may not be present.

If you need a fully populated element, look for “end” events instead.

New in version 3.4.

Page 28 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

1(1,2,3,4)

Changed in version 3.8: The comment and pi events were added.

Exceptions

class xml.etree.ElementTree.ParseError
XML parse error, raised by the various parsing methods in this module when pars-

ing fails. The string representation of an instance of this exception will contain a us-

er-friendly error message. In addition, it will have the following attributes available:

code
A numeric error code from the expat parser. See the documentation of

xml.parsers.expat for the list of error codes and their meanings.

position
A tuple of line, column numbers, specifying where the error occurred.

Footnotes

The encoding string included in XML output should conform to the appropriate

standards. For example, “UTF-8” is valid, but “UTF8” is not. See

https://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl and

https://www.iana.org/assignments/character-sets/character-sets.xhtml.

Page 29 of 29xml.etree.ElementTree — The ElementTree XML API — Python 3.8.5 documentation

8/19/2020https://docs.python.org/3/library/xml.etree.elementtree.html

